Цифры арабские, говоришь?

Цифровые манёвры в темноте школьных стереотипов

Цифры
pinterest button

Мы все привыкли к тому, что в школе детям рассказывают про то, как появились современные цифры. Что, дескать, это набор самостоятельных знаков, которые пришли к нам от арабов, а те, дескать, не пользуются ими, т.к. предпочли индийское цифровое наследие. Кто же будет проверять аксиому? Земля вертится вокруг Солнца, цифры — арабские, точка... ...нет, запятая, давайте всё-таки проверим!

Как изображали числа в древности

Как будем проверять? А давайте посмотрим, как в старину (глубокую, очень глубокую) записывали числа. Давайте откроем старые тексты, где, по идее, должны быть цифры. Где будем смотреть? А давайте в старых библейских и коранических рукописях и для для интереса на древнеславянском, арабском и древнееврейском. Удивительно, везде цифры изображаются первыми девятью буквами соответствующих алфавитов. Интересно, а какой самый древний алфавит? Финикийский. А кто правопреемник? Древнееврейский. А какой язык был беспрерывным с тех пор? Арабский. А давайте сравним каждую из девяти современных  цифр с первыми девятью буквами финикийского, древнееврейского и (для чистоты эксперимента) арабского алфавитов.

Сравнение семитских букв и современных цифр

1соответствует первой букве Алеф алфавитов:

  • финикийского —
  • древнееврейского — א или прописной —
  • арабского— или

Что мы видим? Вертикальная часть финикийской буквы в древнееврейском алфавите наклонилась влево (в прописи в древнееврейском вправо). Горизонтальная обвеска видоизменилась: превратилась в опору слева и приподнялась справа, а в прописи превратилась в скобку справа от вертикальной черты. В арабском алфавите наклон влево стал меньше, почти невидим, а обвеска ушла в хамзу, которая ставится сверху или (реже) снизу алифа. Во всех трёх случаях ясно прослеживается единица: вертикальная черта и, как правило, клювик (обвеска) слева. Современный клювик может быть в написании длиннее (англо-американское написание) или короче (например, русское написание) или вообще отсутствовать. Вывод: цифра 1 — видоизмененная семитская (финикийская, древнееврейская, арабская) буква алеф. 2 соответствует второй букве Бет (ба) алфавитов:

  • финикийского —
  • древнееврейского — ב  или прописной —
  • арабского —

Что мы видим? Образование в финикийском, эволюцию в древнееврейском и закат (опрокидывание) в арабском алфавитах верхней части буквы, похожей на верхнюю часть цифры 2. Основание букв зеркально перевернулось, что бывает при переходе от письма справа-налево к письму слева-направо. Вывод: цифра 2 — видоизмененная семитская (прежде всего, финикийская и древнееврейская) буква бет. 3 соответствует третьей букве Гимель (джим) алфавитов:

  • финикийского —
  • древнееврейского —  или прописной —
  • арабского —

Что мы видим? В финикийской букве начинает формироваться верхняя часть тройки, в древнееврейской формируется средняя часть, а в арабской, с учетом зеркальности — нижняя часть. Вывод: цифра 3 — видоизмененная семитская (финикийская, древнееврейская и арабская) буква гимель (джим). 4 соответствует четвертой букве Далет (даль) алфавитов:

  • финикийского —
  • древнееврейского — или прописной —
  • арабского —

Что мы видим? Нижний сторона треугольника финикийской буквы приподнимается в древнееврейской букве и почти сливается с верхней, создавая утолщение или выступ. Вертикальная сторона остается на месте. Особенно похожа на четверку прописная древнееврейская буква, если посмотреть на ее зеркальное отражение. Промежуточная стадия, которая, возможно, была в какой-то период — вылитая четверка. Арабская буква, сглаженное написание древнееврейской, вряд ли серьёзно повлияла на написание четверки. Вывод: цифра 4 — видоизмененная семитская (прежде всего финикийская и древнееврейская) буква далет. 5 соответствует пятой букве Хей (ха) алфавитов:

  • финикийского —
  • древнееврейского — ה или прописной —
  • арабского —

Что мы видим? Если перевернуть финикийскую и древнееврейскую буквы зеркально, сверху образуется козырек пятерки, а средняя  и нижняя часть переходят в закругление, которое закрепляется в арабской букве. Вывод: цифра 5 — видоизмененная семитская (финикийская, древнееврейская и арабская) буква хей. 6 соответствует шестой букве Вав (уа) алфавитов:

  • финикийского —
  • древнееврейского —  ו 
  • арабского —

Что мы видим? В финикийском один из козырьков уходит, а вертикальная черта выгибается, в древнееврейском вертикальная черта выгибается, буква зеркально переворачивается. В арабском аналогично. Вывод: цифра 6 — видоизмененная семитская (финикийская, древнееврейская и арабская) буква вав. 7 соответствует седьмой букве Зайн (зай) алфавитов:

  • финикийского —
  • древнееврейского —  
  • арабского —

Что мы видим? Основание финикийской буквы пропадает, козырек сдвигается влево. В результате, чем не семёрка? Вывод: цифра 7 — видоизмененная семитская (финикийская, древнееврейская и арабская) буква зайн (зай). 8 соответствует восьмой букве Хет (ха) алфавитов:

  • финикийского —
  • древнееврейского —  и прописной —
  • арабского —

Что мы видим? Финикийская буква очень похожа, древнееврейская потеряла основание, а арабская — макушку. Вывод: цифра 8 — видоизмененная семитская (финикийская, древнееврейская и арабская) буква хет (ха). 9 соответствует восьмой букве Тет (та) алфавитов:

  • финикийского —
  • древнееврейского — и прописной —
  • арабского — или

Что мы видим? Финикийская буква включает в своем образе девятку. Далее все упрощается в древнееврейской букве, в которой, если её повернуть слегка против часовой стрелки, видна девятка. В арабской букве при аналогичном условии девятка тоже видна. Вывод: цифра 9 — видоизмененная семитская (финикийская, древнееврейская и арабская) буква тет (та).

Общий вывод

  1. Цифры не являются уникальными знаками.
  2. Они пришли с Ближнего Востока из семитских языков и происходят из первых девяти букв основных алфавитов: финикийского, древнееврейского и арабского.
  3. Мне кажется, было бы правильно называть их финикийскими цифрами.

Вместо заключения

Проведена серьёзная работа, сделано большое дело, как говорила моя бабушка. Среди битловских песен она, кстати, любила песенку 'All together now', в которой как нельзя лучше поется про тему сегодняшнего исследования. Слушаем и смотрим.

«Арабские цифры» — статья Википедии

Надо относиться с критикой!

«Арабские цифры — традиционное название набора из десяти знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; ныне использующегося в большинстве стран для записи чисел в десятичной системе счисления.

Индийские цифры возникли в Индии не позднее V в. Тогда же было открыто и формализовано понятие нуля (шунья), которое позволило перейти к позиционной записи чисел.

Арабские и индо-арабские цифры являются видоизменёнными начертаниями индийских цифр, приспособленными к арабскому письму.

Индийскую систему записи широко популяризировал учёный ал-Хорезми, автор знаменитой работы «Китаб аль-джебр ва-ль-мукабала», от названия которой произошёл термин «алгебра». Ал-Хорезми написал книгу «Об индийском счёте», способствовавшую популяризации десятичной позиционной системы записи чисел во всём Халифате, вплоть до Мусульманской Испании. Вигиланский кодекс содержит первое упоминание и изображение арабских цифр (кроме нуля) в Западной Европе. Они появились через мавров в Испании около 900 г.

Арабские цифры стали известны европейцам в X в. Благодаря тесным связям христианской Барселоны (Барселонское графство) и мусульманской Кóрдовы (Кордовский халифат), Сильвестр II (папа римский с 999 по 1003 гг.) имел возможность доступа к научной информации, которой не имел никто в тогдашней Европе. В частности, он одним из первых среди европейцев познакомился с арабскими цифрами, понял удобство их употребления по сравнению с римскими цифрами и начал пропагандировать их внедрение в европейскую науку. В XII в. книга Ал-Хорезми «Об индийском счёте» была переведена на латинский язык и сыграла очень большую роль в развитии европейской арифметики и внедрении индо-арабских цифр».

Источник